University of Essex

MSc Artificial Intelligence

Module: ML_PCOMYE July 2025 B

Unit 11: Individual Presentation Transcript

Transcript

Note: This transcript was automatically prepared using Adobe Premiere Pro and
corrected only for transcription typos.

00:00:00:00 - 00:00:39:00

Hello. This is Matthew Bullen, and this is my Machine Learning PCOM7E July 2025
B final presentation. Let's get started. The task at hand was to build, train and
evaluate the predictive accuracy of a machine learning model using the CIFAR-10
image recognition dataset. The CIFAR-10 dataset is a collection of 60,000 images,
all small thumbnails divided across ten categories such as bird, car, cat, etc.

00:00:39:02 - 00:01:06:25

The methodology, or the preliminary steps of the methodology for the project, were
first to open a new Google Colab notebook, load the Python coding packages
needed for the model, and download the CIFAR-10 dataset. Once the dataset was
downloaded, | ran it through two preliminary pre-processing or data cleaning steps.
The first was to normalize the pixel RGB values for each image

00:01:06:28 - 00:01:40:17

so they fell between 0 and 255 for the red, green, and blue color channels. And this
was just to ensure that every image in the data set would be usable. The second
pre-processing step was to convert the text labels for each image into numerical O or
1 values. So, for example, an image of a car would receive an encoded label value
of one

00:01:40:20 - 00:02:00:25

because the label car applied to it, while every other potential label that could apply
to that same image would receive a value of zero in the vector array, the encoded
vector array, that describes the image’s label.

00:02:00:28 - 00:02:36:11

And with that done, and before jumping into the results of model training, | think it's
worthwhile to go over why machine learning models need to use training sets
separate from testing sets. One of the biggest reasons that training sets need to be
separated from validation sets is in order to avoid overfitting a model. So, for
example, if you only test a model using the same data that you trained it with, you're
essentially answering your own question.

00:02:36:13 - 00:03:14:15

You’d have no way, no objective way, to know or to measure how accurate the model
would be when faced with data points it has never encountered before. And as
related note, it's a good practice to separate validation sets from training sets in
order to reduce the risk of inadvertent human bias or data cherry picking. In the
model’s training set, an example of bias or data cherry picking would be loading a
model's training set with only duplicates of the very same image.

00:03:14:18 - 00:03:56:17

That model would most likely be 100% accurate, but have essentially no predictive
value whatsoever, because its underlying training data was so massaged and
skewed by human intervention. Also, just as a programing side note, a completely
separate and independent validation or testing set means that you can iterate over
the training data as much as you'd like without any concern about it affecting or
influencing the results of validation set [testing].

00:03:56:20 - 00:04:11:03

And having that separate or independent validation set also makes it easier to make
iterative adjustments to the parameters you use to train the model on the training
data on the fly as you go.

00:04:11:05 - 00:05:01:04

For this project, | use a convolutional neural network, or CNN. | use a CNN, because
they’re industry standard with robust code packages available. They're well
understood in the research literature. The code that's used to create and train them
is readily amenable to hyperparameter adjustments during training and during
validation testing, which means that it's very easy to swap in and out different pieces
of the model as you're working with it, which makes it much faster to land on the
most accurate, or the most likely accurate, model available for the dataset you're
working with.

00:05:01:07 - 00:05:35:03

Related to that, let's briefly go over what exactly a CNN is in terms of its architectural
components. Broadly summarized, the core component of a CNN is a kernel or a
matrix, a matrix of weights. That kernel passes over larger matrices of input data
sequentially. And as it does, it performs element-based multiplication using
whichever values it's encountering inside the data window it's working with at the
time.

00:05:35:06 - 00:05:59:12

The results of that processing are then assigned to a single output value that is
loaded into a results matrix, which is then used by subsequent steps in the model.
And on this slide, we have an example of a CNN kernel in action. (Just to be
scrupulous, this is an example that | copied from a Google example.)

00:05:59:12 - 00:06:38:05

| did not create this illustration, but it is an excellent illustration for seeing how a
kernel moves over training data and then outputs results, with the blue matrices on
the left representing the training data and the kernel moving across it, and the green
matrix on the right representing the output values of those operations. Then on this
slide, we see an excerpt of some of the code used to create the model itself.

00:06:38:08 - 00:07:05:06

Again, this is just an example that I've copied from a Google example, but it was the
basis for the code that | used inside the project itself. And | include this code snippet
because the Python code used to create the CNN model in this project is very
straightforward. It's very human readable. And you can see each layer and
component of the model listed in sequence.

00:07:05:09 - 00:07:57:17

Moving on. Training a model depends on configuring its input hyperparameters. So
for a starting point, | defaulted to some fairly standard hyperparameter settings. As
we can see from the slide, | started with 5 epochs, a batch size of 64 images, the
Adam optimizer function, the categorical cross-entropy loss function, which is also
industry standard and well-known, and the Softmax function for the final activation
layer, again, because it's very standard, very well-known, and readily amenable to
outputting human readable

00:07:57:20 - 00:08:29:07

validation testing results. And again, just to be scrupulously accurate, these are
default values that | then modified extensively throughout the course of the project.
But | got the idea for them from looking at a Google example. So moving on to model
training, how did | train the model? The model was trained eight times using different
variations on that initial set of hyperparameters from the previous slide.

00:08:29:10 - 00:08:56:00

For a quick summary, the first three runs stuck with the same default
hyperparameters, but vary the number of epochs starting with 5, then 25 and 50.
We'll see this later on, but | determined that 25 epochs looked like the sweet spot, or
the ideal number for the greatest accuracy of model validation testing. So | stuck with
that going forward.

00:08:56:02 - 00:09:24:28

After settling on using 25 epochs, | then varied model training by adjusting dropout
rates between 0.5 and 0.25, and by swapping out or swapping in different optimizer
functions, such as the AdamW optimizer function, which is the variation on the first
Adam function used, as well as the Stochastic Gradient Descent or SGD optimizer
function.

00:09:31:06 - 00:10:02:24

So with that in front of us, | think it would be worthwhile to run through the model
training results quickly. And you'll see from the very first training run of only 5 epochs
that this was a test run or a dry run. While it was far more accurate than random
chance, just on its face, if you have very few epochs and all default values, it was
highly unlikely that this set of parameters would result in the most accurate model
possible.

00:10:02:27 - 00:10:49:03

So | then reran the training using 25 epochs, which did increase accuracy
substantially to approximately 75%. But when | increased the number of epochs to
50, | quickly noticed that the model's accuracy remained fairly steady at above 72%,
but it did not exceed the 74% from the previous run. And given that the accuracy had
declined slightly despite doubling the number of epochs, | took that as a sign that the
model had reached a point of diminishing returns for using additional epochs, and
that more epochs were not likely to provide much value in terms of increased
validation testing accuracy.

00:10:49:06 - 00:11:13:07

So after settling on 25 epochs as the working number to use for further training runs,
| reran the model using 25 epochs, while adjusting the dropout rate to 0.25, the
dropout rate being the number of processing nodes that are culled

00:11:13:10 - 00:11:51:09

from model layer iterations. But, as we saw before, model accuracy remained
approximately the same at around 72%. There was no significant increase in
accuracy, which led me to the conclusion that any further variations on the existing,
or the already used, hyperparameters were unlikely to increase model accuracy, no
matter how many minor [hyperparameter] tweaks or how many further training runs
might have been undertaken.

00:11:51:11 - 00:12:17:18

So instead of tweaking the existing hyperparameters, | swapped out the optimizer
function. Instead of using the Adam optimizer function, | switched over to AdamW,
which is an expanded and related optimizer function. Again, as before, model
accuracy remained approximately the same at around 73%.

00:12:17:20 - 00:12:48:23

| then revamped the same training session using a tweaked dropout rate of only 0.25
instead of 0.5, but again, no improvement to the model's accuracy. In fact, there was
a minor decrease in accuracy to around 72%, which led me to the conclusion that
there would likely be no significant difference worth investigating between the Adam
versus AdamW optimizer functions.

00:12:48:25 - 00:13:35:02

Then, last up, | ran two training runs using 25 epochs, but swapping in the Stochastic
Gradient Descent optimizer function. And | chose the SGD optimizer function
because, well, just as a general matter, it's fairly efficient, comparatively speaking, for
larger datasets like the CIFAR-10 dataset with 60,000 entries, but more importantly
because it uses smaller batches. Because it uses smaller batches, that can help
reduce the risk of outlier points or other aberrations or unexpected variations in the
underlying data radically skewing the results.

00:13:35:04 - 00:14:32:07

It helps reduce the importance of outliers so that the substantive or most common or
most consistent part of the data takes prominence in the model [results]. And as
we've seen before, adjusting the dropout rate, even using the SGD optimizer, did not
make a material difference in model validation testing accuracy. And as a general
matter, after using three different optimizer functions, each with largely similar
accuracy results, my takeaway was that it could be possible that the data set itself
might not be amenable to a much higher model accuracy value range than what
we've already seen, which would be ranging between 72 and 74%.

00:14:32:10 - 00:15:05:01

And here on this slide, we see each of the training runs with their validation accuracy
values. And just reiterate, 25 epochs with a 0.5 dropout rate, using the Adam
optimizer was the most accurate at 74.19%. So what does all of this mean? Or what
would be the takeaways from these training runs? | think the first takeaway would be
that increasing the number of epochs can increase accuracy.

00:15:05:03 - 00:15:35:24

And in this case, we found the greatest accuracy after 25 epochs, but it decreased
[in] accuracy at 50 epochs. Or, in other words, it had a point of diminishing returns
where further epochs did not provide greater accuracy, and, in fact, started to impair
accuracy. Similarly, decreasing the dropout rate from 0.5 to 0.25 did not appear to
provide any significant improvement in model accuracy.

00:15:35:27 - 00:16:10:18

Using the Keras AdamW optimizer rather than the Adam (no “W”) optimizer likewise
did not seem to have much effect on model accuracy. And the same thing for using
Stochastic Gradient Descent: the SGD optimizer provided remarkably similar values
in terms of model validation accuracy, but it did not dramatically increase or
decrease accuracy, so it had no particular effect in either direction.

00:16:10:20 - 00:16:45:21
Finally, what would be the lessons learned, or how could the results of these training

sessions be [related] to findings in the literature? And | think there are several, first
among them, tuning hyperparameters. It's worthwhile as an exploratory effort to see

if model accuracy can be increased. But more is not always better. More tuning does
not necessarily result in greater model accuracy.

00:16:45:23 - 00:17:26:08

Similarly, model accuracy improvements aren't necessarily linear in relation to each
other. So, for example, increasing every configurable hyperparameter value will not
necessarily increase model accuracy. It could well be the case that decreasing
values for certain parameters in combination with increased or omitted values for
other hyperparameters could increase accuracy. So the relationship is more
interconnected than it is linear.

00:17:26:11 - 00:18:06:16

And finally, | think, a valuable takeaway is that optimizer functions by themselves are
not silver bullets. Several should be tried and the results for each compared, and it
could well be the case for many data sets that certain types of optimizer functions
simply aren't cut out for the type of data you're working with.

That’'s my presentation. Thank you.

