|
.I University of Essex

Online

ML_PCOM7E July 2025 B

Individual Presentation




i University of Essex

Online . Introduction — Data Preparation

Methodology

1. As a baseline preparatory step, the necessary Keras and related Python packages were
loaded into a new Google Colab notebook.

2. The CIFAR-10 image recognition dataset was then downloaded into the notebook.

3. The pixel RGB values for each image were normalized to fall between 0 and 255 to
conform to the standard usable range (Probst, Boulesteix and Bischl, 2019).

4. The category values for each image were one-hot encoded into binary vectors with a
length of 10, corresponding to the 10 categories of images: 'bird’, 'car’, 'cat’, 'deer’,

'dog', 'frog', 'horse’, 'plane’, 'ship’, and 'truck’.

5. The original split between 50,000 training images and 10,000 test images was retained.



i University of Essex

Online Il. Validation Set Rationale

Primary Reasons

1. Training sets must be separated from validation sets to avoid overfitting a model
(Burkov, 2019; Coté et al, 2024).

2. Training sets must be separated from validation sets to provide unknown (to the trained
model) data points that are able to act as appropriate objective measures of the
model’s accuracy when faced with new information (Probst, Boulesteix and Bischl,
2019).

3. Training sets must be separated from validation sets to reduce the chance of
introducing inadvertent human bias or data cherry-picking into the model (Burkov,
2019; Coté et al, 2024).

4. Validation sets allow the use of iterative adjustments to hyperparameters to reach the
most efficient or most optimized version of the model (Burkov, 2019; C6té et al, 2024).



i University of Essex

Online

lll. Model Selection

Convolutional Neural Network (“CNN")

1. Industry standard with robust code packages available.
2. Well-understood in the literature (Burkov, 2019; Coté et al, 2024).

3. Readily amenable to hyperparameter adjustments during the training and validation
steps (Burkov, 2019; Coté et al, 2024).

4. Readily amenable to the inclusion of optimization and related processing layers in the
code (Probst, Boulesteix and Bischl, 2019).



i University of Essex

Online IV. Architecture & Hyperparameters

Keras 2D CNN Architecture Components

1. The core component is a kernel, or a matrix of weights (Burkov, 2019; C6té et al, 2024).

2. The kernel passes over matrices of input data sequentially (Burkov, 2019; Coté et al,
2024; Google Colaboratory Notebook: CIFAR 10-CNN Using PyTorch).

3. The kernel performs element-based multiplication using the values of the data “window
overlap” it occupies at each point (Burkov, 2019; Coté et al, 2024; Google Colaboratory
Notebook: CIFAR 10-CNN Using PyTorch).

4. The results of that multiplication are assigned to a single output value (Burkov, 2019;
Coté et al, 2024; Google Colaboratory Notebook: CIFAR 10-CNN Using PyTorch).



i University of Essex

Online IV. Architecture & Hyperparameters

Example of a CNN Kernel in Action

Source: Google Colaboratory Notebook: CIFAR 10-CNN Using PyTorch.



i University of Essex

Online IV. Architecture & Hyperparameters

Relevant Code

model = Sequential()

model.add(Conv2D(32, (3, 3), activation='relu’, input_shape=x_train.shape[1:]))
model.add(MaxPooling2D((2, 2)))

model.add(Conv2D(64, (3, 3), activation='relu'))

model.add(MaxPooling2D((2, 2)))

model.add(Conv2D(128, (3, 3), activation='relu'))

model.add(Flatten())

model.add(Dense(128, activation="relu'))

model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

Adapted From: Google Colaboratory Notebook: CIFAR 10-CNN Using PyTorch.



i University of Essex

Online IV. Architecture & Hyperparameters

Initial Hyperparameters

1. Epochs:5

2. Batch size: 64

3. Optimizer function: Adam

4. Loss function: Categorical cross-entropy
5. Final layer activation function: Softmax

6. Please note that the initial hyperparameters were adapted from Google Colaboratory
Notebook: CIFAR 10-CNN Using PyTorch.



i University of Essex

Online V. Training Strategy

Methodology

1. The model was trained eight (8) times using variated hyperparameters.

2. The first run used a batch of 5 epochs, followed by batches of 25, then 50 epochs. Each
used an 0.5 dropout rate and the Keras Adam optimizer.

3. Based on the results of the preceding, a batch of 25 epochs was run at an 0.25 dropout
rate, also using the Keras Adam optimizer.

4. For comparison, batches of 25 epochs were run at 0.5 and 0.25 dropout rates using the
Keras AdamW optimizer.

5. For further comparison, batches of 25 epochs were run at 0.5 and 0.25 dropout rates
using the Stochastic Gradient Descent ("SGD”) optimizer.



University of Essex

Online VI. Performance Metrics

Result: 5 Epochs @ 0.5 Dropout Rate + Adam Optimizer

1. After 5 epochs, the model’s accuracy reached 69.07%, which far exceeded the accuracy
of pure chance (10.00%, or guessing 1 out of the 10 available image categories).

522;28;/5 76s 94ms/step - accuracy: 0.3034 - loss: 1.8685 - val_accuracy: 0.5320 - val_loss: 1.2893
522;982/5 73s 93ms/step - accuracy: 0.5172 - loss: 1.3608 - val_accuracy: 0.6083 — val_loss: 1.1125
5235983/5 84s 95ms/step — accuracy: 0.5870 - loss: 1.1706 - val_accuracy: 0.6261 — val_loss: 1.0595
523;983/5 73s 93ms/step - accuracy: 0.6287 - loss: 1.0548 - val_accuracy: 0.6644 — val_loss: 0.9574
523;982/5 80s 91ms/step - accuracy: 0.6661 - loss: 0.9655 - val_accuracy: 0.6907 — val_loss: 0.8769

Test Loss: 0.8769
Test Accuracy: 0.6907



University of Essex

Online VI. Performance Metrics

Result: 25 Epochs @ 0.5 Dropout Rate + Adam Optimizer

1. After 25 epochs, the model’s accuracy reached 74.19%, which exceeded the accuracy of
5 epochs of training (69.07%) and of pure chance (10.00%).

Epoch 21/25

782/782 71s 91ms/step — accuracy: 0.8445 - loss: 0.4334 - val_accuracy: 0.7351 - val_loss: 0.9080
Epoch 22/25
782/782 74s 94ms/step — accuracy: 0.8515 - loss: 0.4105 - val_accuracy: 0.7375 - val_loss: 0.9336
Epoch 23/25
782/782 73s 93ms/step — accuracy: 0.8580 - loss: 0.3955 - val_accuracy: 0.7296 - val_loss: 0.9713
Epoch 24/25
782/782 72s 92ms/step — accuracy: 0.8626 — loss: 0.3807 - val_accuracy: 0.7423 - val_loss: 0.9861
Epoch 25/25
782/782 81s 91ms/step — accuracy: 0.8679 - loss: 0.3579 - val_accuracy: 0.7419 - val_loss: 1.0186

Test Loss: 1.0186
Test Accuracy: 0.7419



i University of Essex

Online VI. Performance Metrics

Result: 50 Epochs @ 0.5 Dropout Rate + Adam Optimizer

1. After 50 epochs, the model’s accuracy logged in at 72.45%, which exceeded 5 epochs of
training (69.07%), but was less accurate compared to 25 epochs of training (74.19%).

2. Additional epochs beyond approximately 25 were therefore determined to be likely to
provide no material increase in accuracy.

Epoch 46/50

782/782 82s 92ms/step - accuracy: 0.9047 - loss: 0.2507 - val_accuracy: 0.7312 - val_loss: 1.4158
Epoch 47/50

782/782 78s 99ms/step - accuracy: 0.9139 - loss: 0.2260 - val_accuracy: 0.7309 - val_loss: 1.4279
Epoch 48/50

782/782 79s 101ms/step — accuracy: 0.9041 - loss: 0.2562 - val_accuracy: 0.7310 - val_loss: 1.3926
Epoch 49/50

782/782 80s 102ms/step — accuracy: 0.9105 - loss: 0.2447 - val_accuracy: 0.7302 - val_loss: 1.4579
Epoch 50/50

782/782 81s 104ms/step — accuracy: 0.9168 - loss: 0.2257 - val_accuracy: 0.7245 - val_loss: 1.4063

Test Loss: 1.4063
Test Accuracy: 0.7245



University of Essex

Online VI. Performance Metrics

Result: 25 Epochs @ 0.25 Dropout Rate + Adam Optimizer

1. Model accuracy reached 72.18%, comparable to previous runs.
2. From this result, the conclusion is reached that further runs with variations on the

hyperparameters used are unlikely to exceed the accuracy measurements reached to
this point.

Epoch 21/25

782/782 82s 92ms/step - accuracy: 0.9108 - loss: 0.2423 - val_accuracy: 0.7305 - val_loss: 1.1705
Epoch 22/25
782/782 72s 92ms/step - accuracy: 0.9161 - loss: 0.2285 - val_accuracy: 0.7304 - val_loss: 1.1425
Epoch 23/25
782/782 72s 93ms/step - accuracy: 0.9210 - loss: 0.2145 - val_accuracy: 0.7235 - val_loss: 1.2117
Epoch 24/25
782/782 72s 93ms/step - accuracy: 0.9227 - loss: 0.2114 - val_accuracy: 0.7160 — val_loss: 1.2361
Epoch 25/25
782/782 73s 93ms/step - accuracy: 0.9252 - loss: 0.2033 - val_accuracy: 0.7218 - val_loss: 1.3159

Test Loss: 1.3159
Test Accuracy: 0.7218



University of Essex

Online VI. Performance Metrics

Result: 25 Epochs @ 0.50 Dropout Rate + AdamW Optimizer

1. Switching to the AdamW optimizer resulted in a comparable accuracy of prior runs at
73.22%.

2. Atfirst glance, the AdamW optimizer did not improve the model.

782/782 83s 102ms/step - accuracy: 0.8587 - loss: 0.3910 - val_accuracy: 0.7400 - val_loss: 0.9261
Epoch 21/25
782/782 84s 107ms/step - accuracy: 0.8581 — loss: ©.3851 - val_accuracy: 0.7345 - val_loss: 0.9681
Epoch 22/25
782/782 81s 103ms/step - accuracy: 0.8677 — loss: 0.3648 - val_accuracy: 0.7276 - val_loss: 1.0097
Epoch 23/25
782/782 81s 104ms/step - accuracy: 0.8692 - loss: 0.3549 - val_accuracy: 0.7356 — val_loss: 1.0354
Epoch 24/25
782/782 83s 105ms/step — accuracy: 0.8806 — loss: 0.3320 - val_accuracy: 0.7423 - val_loss: 0.9946
Epoch 25/25
782/782 81s 103ms/step — accuracy: 0.8803 - loss: 0.3262 - val_accuracy: 0.7322 - val_loss: 1.0374

Test Loss: 1.0374
Test Accuracy: 0.7322



University of Essex

Online

VI.

Performance Metrics

Result: 25 Epochs @ 0.25 Dropout Rate + AdamW Optimizer

1. To confirm, adjusting the dropout rate to 0.25 resulted in a minor decrease in accuracy

to 72.10%.

2. The conclusion must be had that for this dataset, there is no significant difference
between the Adam and AdamW optimizers to model accuracy.

782/782

Epoch 21/25
782/782

Epoch 22/25
782/782

Epoch 23/25
782/782

Epoch 24/25
782/782

Epoch 25/25
782/782

Test Loss:

Test Accuracy: 0.7210

80s

84s

78s

83s

75s

86s

100ms/step —
103ms/step -
100ms/step —

101ms/step —

accuracy:

accuracy:

accuracy:

accuracy:

0.8916

0.8965

0.9027

0.9019

loss:
loss:
loss:

loss:

96ms/step — accuracy: 0.9140 - loss:

102ms/step — accuracy: 0.9124 - loss:

0.3006 -

0.2794 -

0.2660 —

0.2660 -

val_accuracy:
val_accuracy:
val_accuracy:

val_accuracy:

0.7125

0.7130

0.7207

0.7136

val_loss:
val_loss:
val_loss:

val_loss:

0.2331 - val_accuracy: 0.7144 - val_loss:

0.2328 - val_accuracy: 0.7210 - val_loss:

1.1125

1.1113

1.1914

1.2365

1.2571

1.2490



i University of Essex

Online VI. Performance Metrics

Result: 25 Epochs @ 0.50 Dropout Rate + SGD Optimizer

1. Switching to the Stochastic Gradient Descent (“SGD”) optimizer resulted in a
comparable validation accuracy (73.89%).

2. The SGD optimizer was chosen as it is computationally efficient for larger datasets and
its use of smaller batches reduces the risk of outlier points / local minima / saddle
points that could skew the results.

Epoch 21/25

782/782 83s 93ms/step - accuracy: 0.8033 - loss: 0.5504 - val_accuracy: 0.7206 — val_loss: 0.8476
Epoch 22/25
782/782 82s 93ms/step — accuracy: 0.8155 - loss: 0.5197 - val_accuracy: 0.7345 - val_loss: 0.8321
Epoch 23/25
782/782 83s 95ms/step — accuracy: 0.8218 - loss: 0.4982 - val_accuracy: 0.7356 - val_loss: 0.8211
Epoch 24/25
782/782 73s 93ms/step - accuracy: 0.8327 - loss: 0.4718 - val_accuracy: 0.7360 — val_loss: 0.8265
Epoch 25/25
782/782 81s 92ms/step — accuracy: 0.8352 - loss: 0.4549 - val_accuracy: 0.7389 - val_loss: 0.8354

Test Loss: 0.8354
Test Accuracy: 0.7389



i University of Essex

Online VI. Performance Metrics

Result: 25 Epochs @ 0.25 Dropout Rate + SGD Optimizer

1. Switching to the Stochastic Gradient Descent (“SGD”) optimizer resulted in a materially
similar accuracy score of 72.27%.

2. After training the model on 3 different optimizers, each returned markedly similar
accuracy results. The similarity of outcomes suggests that the dataset itself might not
be amenable to CNN model accuracy values better than the values already found.

Epoch 21/25

782/782 83s 95ms/step - accuracy: 0.8554 - loss: 0.4030 - val_accuracy: 0.7210 - val_loss: 0.9259
Epoch 22/25
782/782 82s 95ms/step — accuracy: 0.8665 - loss: 0.3726 — val_accuracy: 0.7171 - val_loss: 0.9381
Epoch 23/25
782/782 71s 91ms/step - accuracy: 0.8757 - loss: 0.3502 - val_accuracy: 0.7087 - val_loss: 1.0033
Epoch 24/25
782/782 73s 93ms/step - accuracy: 0.8847 - loss: 0.3186 - val_accuracy: 0.7107 - val_loss: 1.0334
Epoch 25/25
782/782 73s 93ms/step - accuracy: 0.8913 - loss: 0.3064 - val_accuracy: 0.7227 - val_loss: 1.0235

Test Loss: 1.0235
Test Accuracy: 0.7227



i University of Essex

Online Vil. Comparative Discussion

Hyperparameters Validation Accuracy

5 Epochs @ 0.5 Dropout Rate + Adam Optimizer 69.07%
25 Epochs @ 0.5 Dropout Rate + Adam Optimizer 74.19%
50 Epochs @ 0.5 Dropout Rate + Adam Optimizer 72.45%
25 Epochs @ 0.25 Dropout Rate + Adam Optimizer 72.18%
25 Epochs @ 0.50 Dropout Rate + AdamW Optimizer 73.22%
25 Epochs @ 0.25 Dropout Rate + AdamW Optimizer 72.10%
25 Epochs @ 0.50 Dropout Rate + SGD Optimizer 73.89%

25 Epochs @ 0.25 Dropout Rate + SGD Optimizer 72.27%



i University of Essex

Online Vil. Comparative Discussion

Results

1. Increasing the number of epochs increased accuracy, with the greatest accuracy after
25 epochs, but decreased accuracy at 50 epochs.

2. Decreasing the dropout rate from 0.5 to 0.25 provided no particularly significant
improvement to model accuracy.

3. Using the Keras AdamW optimizer, rather than the Keras Adam optimizer,
likewiseprovided no particularly significant improvement to model accuracy.

4. Using the Keras Stochastic Gradient Descent optimizer provided no particularly
significant improvement to model accuracy.



i University of Essex

Online VIll. Lessons Learned

Lessons Learned

1. Hyperparameter tuning may or may not increase model accuracy, but more is not
always better in terms of hyperparameter tuning (Probst, Boulesteix and Bischl, 2019).

2. Model accuracy improvements are not necessarily always linear. Changing some
hyperparameters, such as the epoch batch size, may result in diminishing returns or
decreased model accuracy after an inflection point (Burkov, 2019; C6té et al, 2024).

3. Likewise, hyperparameter interactions cannot be assumed to follow 1-to-1 linear
relationships between each other, either, but may interact non-linearly to increase or
reduce model accuracy (Arnold et al, 2024).

4. Optimizer functions may or may not significantly impact model accuracy. Experimenting
with several is worthwhile when fine-tuning a model, either to reach increased
accuracy, or to confirm the utility of prior tests (Probst, Boulesteix and Bischl, 2019).



i University of Essex

VI. Appendix — References

Online

References

Arnold, C., Biedebach, L., Kiipfer, A. and Neunhoeffer, M. (2024). The role of
hyperparameters in machine learning models and how to tune them. Political Science

Research and Methods, [online] pp.1-8. doi:https://doi.org/10.1017/ psrm.2023.61.

Burkov, A. (2019). The Hundred-Page Machine Learning Book. Andriy Burkov.

Coté, P-0., Nikanjam, A., Ahmed, N., Humeniuk, D. and Khomh, F. (2024). Data cleaning and
machine learning: a systematic literature review. Automated software engineering, 31(2).
doi:https://doi.org/10.1007/s10515-024-00453-w.

colab.research.google.com (2025). Google Colaboratory Notebook: CIFAR 10-CNN Using
PyTorch. [online] Available at: https://colab.research.google.com.



i University of Essex

Online VI. Appendix — References

References (Continued)

Coté, P-0., Nikanjam, A., Ahmed, N., Humeniuk, D. and Khomh, F. (2024). Data cleaning and
machine learning: a systematic literature review. Automated software engineering, 31(2).
doi:https://doi.org/10.1007/s10515-024-00453-w.

kaggle.com (2025). CIFAR 10-CNN Using PyTorch. [online] Available at:
https://www.kaggle.com/code/shadabhussain/cifar-10-cnn-using-pytorch.

Probst, P., Boulesteix, A.-L. and Bischl, B. (2019). Tunability: Importance of Hyperparameters
of Machine Learning Algorithms. Journal of Machine Learning Research, [online] 20(53),
pp.1-32. Available at: https://www.jmlr.org/papers/v20/18-444.html.



