
ML_PCOM7E July 2025 B

Individual Presentation

I. Introduction – Data Preparation

Methodology

1. As a baseline preparatory step, the necessary Keras and related Python packages were
loaded into a new Google Colab notebook.

2. The CIFAR-10 image recognition dataset was then downloaded into the notebook.

3. The pixel RGB values for each image were normalized to fall between 0 and 255 to
conform to the standard usable range (Probst, Boulesteix and Bischl, 2019).

4. The category values for each image were one-hot encoded into binary vectors with a
length of 10, corresponding to the 10 categories of images: 'bird', 'car', 'cat’, 'deer',
'dog', 'frog', 'horse', 'plane', 'ship’, and 'truck’.

5. The original split between 50,000 training images and 10,000 test images was retained.

II. Validation Set Rationale

Primary Reasons

1. Training sets must be separated from validation sets to avoid overfitting a model
(Burkov, 2019; Côté et al, 2024).

2. Training sets must be separated from validation sets to provide unknown (to the trained
model) data points that are able to act as appropriate objective measures of the
model’s accuracy when faced with new information (Probst, Boulesteix and Bischl,
2019).

3. Training sets must be separated from validation sets to reduce the chance of
introducing inadvertent human bias or data cherry-picking into the model (Burkov,
2019; Côté et al, 2024).

4. Validation sets allow the use of iterative adjustments to hyperparameters to reach the
most efficient or most optimized version of the model (Burkov, 2019; Côté et al, 2024).

III. Model Selection

Convolutional Neural Network (“CNN”)

1. Industry standard with robust code packages available.

2. Well-understood in the literature (Burkov, 2019; Côté et al, 2024).

3. Readily amenable to hyperparameter adjustments during the training and validation
steps (Burkov, 2019; Côté et al, 2024).

4. Readily amenable to the inclusion of optimization and related processing layers in the
code (Probst, Boulesteix and Bischl, 2019).

IV. Architecture & Hyperparameters

Keras 2D CNN Architecture Components

1. The core component is a kernel, or a matrix of weights (Burkov, 2019; Côté et al, 2024).

2. The kernel passes over matrices of input data sequentially (Burkov, 2019; Côté et al,
2024; Google Colaboratory Notebook: CIFAR 10-CNN Using PyTorch).

3. The kernel performs element-based multiplication using the values of the data “window
overlap” it occupies at each point (Burkov, 2019; Côté et al, 2024; Google Colaboratory
Notebook: CIFAR 10-CNN Using PyTorch).

4. The results of that multiplication are assigned to a single output value (Burkov, 2019;
Côté et al, 2024; Google Colaboratory Notebook: CIFAR 10-CNN Using PyTorch).

IV. Architecture & Hyperparameters

Example of a CNN Kernel in Action

Source: Google Colaboratory Notebook: CIFAR 10-CNN Using PyTorch.

IV. Architecture & Hyperparameters

Relevant Code

model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=x_train.shape[1:]))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

Adapted From: Google Colaboratory Notebook: CIFAR 10-CNN Using PyTorch.

IV. Architecture & Hyperparameters

Initial Hyperparameters

1. Epochs: 5

2. Batch size: 64

3. Optimizer function: Adam

4. Loss function: Categorical cross-entropy

5. Final layer activation function: Softmax

6. Please note that the initial hyperparameters were adapted from Google Colaboratory
Notebook: CIFAR 10-CNN Using PyTorch.

V. Training Strategy

Methodology

1. The model was trained eight (8) times using variated hyperparameters.

2. The first run used a batch of 5 epochs, followed by batches of 25, then 50 epochs. Each
used an 0.5 dropout rate and the Keras Adam optimizer.

3. Based on the results of the preceding, a batch of 25 epochs was run at an 0.25 dropout
rate, also using the Keras Adam optimizer.

4. For comparison, batches of 25 epochs were run at 0.5 and 0.25 dropout rates using the
Keras AdamW optimizer.

5. For further comparison, batches of 25 epochs were run at 0.5 and 0.25 dropout rates
using the Stochastic Gradient Descent (”SGD”) optimizer.

VI. Performance Metrics

Result: 5 Epochs @ 0.5 Dropout Rate + Adam Optimizer

1. After 5 epochs, the model’s accuracy reached 69.07%, which far exceeded the accuracy
of pure chance (10.00%, or guessing 1 out of the 10 available image categories).

VI. Performance Metrics

Result: 25 Epochs @ 0.5 Dropout Rate + Adam Optimizer

1. After 25 epochs, the model’s accuracy reached 74.19%, which exceeded the accuracy of
5 epochs of training (69.07%) and of pure chance (10.00%).

VI. Performance Metrics

Result: 50 Epochs @ 0.5 Dropout Rate + Adam Optimizer

1. After 50 epochs, the model’s accuracy logged in at 72.45%, which exceeded 5 epochs of
training (69.07%), but was less accurate compared to 25 epochs of training (74.19%).

2. Additional epochs beyond approximately 25 were therefore determined to be likely to
provide no material increase in accuracy.

VI. Performance Metrics

Result: 25 Epochs @ 0.25 Dropout Rate + Adam Optimizer

1. Model accuracy reached 72.18%, comparable to previous runs.

2. From this result, the conclusion is reached that further runs with variations on the
hyperparameters used are unlikely to exceed the accuracy measurements reached to
this point.

VI. Performance Metrics

Result: 25 Epochs @ 0.50 Dropout Rate + AdamW Optimizer

1. Switching to the AdamW optimizer resulted in a comparable accuracy of prior runs at
73.22%.

2. At first glance, the AdamW optimizer did not improve the model.

VI. Performance Metrics

Result: 25 Epochs @ 0.25 Dropout Rate + AdamW Optimizer

1. To confirm, adjusting the dropout rate to 0.25 resulted in a minor decrease in accuracy
to 72.10%.

2. The conclusion must be had that for this dataset, there is no significant difference
between the Adam and AdamW optimizers to model accuracy.

VI. Performance Metrics

Result: 25 Epochs @ 0.50 Dropout Rate + SGD Optimizer

1. Switching to the Stochastic Gradient Descent (“SGD”) optimizer resulted in a
comparable validation accuracy (73.89%).

2. The SGD optimizer was chosen as it is computationally efficient for larger datasets and
its use of smaller batches reduces the risk of outlier points / local minima / saddle
points that could skew the results.

VI. Performance Metrics

Result: 25 Epochs @ 0.25 Dropout Rate + SGD Optimizer

1. Switching to the Stochastic Gradient Descent (“SGD”) optimizer resulted in a materially
similar accuracy score of 72.27%.

2. After training the model on 3 different optimizers, each returned markedly similar
accuracy results. The similarity of outcomes suggests that the dataset itself might not
be amenable to CNN model accuracy values better than the values already found.

VII. Comparative Discussion

Hyperparameters Validation Accuracy

5 Epochs @ 0.5 Dropout Rate + Adam Optimizer 69.07%

25 Epochs @ 0.5 Dropout Rate + Adam Optimizer 74.19%

50 Epochs @ 0.5 Dropout Rate + Adam Optimizer 72.45%

25 Epochs @ 0.25 Dropout Rate + Adam Optimizer 72.18%

25 Epochs @ 0.50 Dropout Rate + AdamW Optimizer 73.22%

25 Epochs @ 0.25 Dropout Rate + AdamW Optimizer 72.10%

25 Epochs @ 0.50 Dropout Rate + SGD Optimizer 73.89%

25 Epochs @ 0.25 Dropout Rate + SGD Optimizer 72.27%

VII. Comparative Discussion

Results

1. Increasing the number of epochs increased accuracy, with the greatest accuracy after
25 epochs, but decreased accuracy at 50 epochs.

2. Decreasing the dropout rate from 0.5 to 0.25 provided no particularly significant
improvement to model accuracy.

3. Using the Keras AdamW optimizer, rather than the Keras Adam optimizer,
likewiseprovided no particularly significant improvement to model accuracy.

4. Using the Keras Stochastic Gradient Descent optimizer provided no particularly
significant improvement to model accuracy.

VIII. Lessons Learned

Lessons Learned

1. Hyperparameter tuning may or may not increase model accuracy, but more is not
always better in terms of hyperparameter tuning (Probst, Boulesteix and Bischl, 2019).

2. Model accuracy improvements are not necessarily always linear. Changing some
hyperparameters, such as the epoch batch size, may result in diminishing returns or
decreased model accuracy after an inflection point (Burkov, 2019; Côté et al, 2024).

3. Likewise, hyperparameter interactions cannot be assumed to follow 1-to-1 linear
relationships between each other, either, but may interact non-linearly to increase or
reduce model accuracy (Arnold et al, 2024).

4. Optimizer functions may or may not significantly impact model accuracy. Experimenting
with several is worthwhile when fine-tuning a model, either to reach increased
accuracy, or to confirm the utility of prior tests (Probst, Boulesteix and Bischl, 2019).

VI. Appendix – References

References

Arnold, C., Biedebach, L., Küpfer, A. and Neunhoeffer, M. (2024). The role of
hyperparameters in machine learning models and how to tune them. Political Science
Research and Methods, [online] pp.1–8. doi:https://doi.org/10.1017/ psrm.2023.61.

Burkov, A. (2019). The Hundred-Page Machine Learning Book. Andriy Burkov.
Côté, P.-O., Nikanjam, A., Ahmed, N., Humeniuk, D. and Khomh, F. (2024). Data cleaning and
machine learning: a systematic literature review. Automated software engineering, 31(2).
doi:https://doi.org/10.1007/s10515-024-00453-w.

colab.research.google.com (2025). Google Colaboratory Notebook: CIFAR 10-CNN Using
PyTorch. [online] Available at: https://colab.research.google.com.

VI. Appendix – References

References (Continued)

Côté, P.-O., Nikanjam, A., Ahmed, N., Humeniuk, D. and Khomh, F. (2024). Data cleaning and
machine learning: a systematic literature review. Automated software engineering, 31(2).
doi:https://doi.org/10.1007/s10515-024-00453-w.

kaggle.com (2025). CIFAR 10-CNN Using PyTorch. [online] Available at:
https://www.kaggle.com/code/shadabhussain/cifar-10-cnn-using-pytorch.

Probst, P., Boulesteix, A.-L. and Bischl, B. (2019). Tunability: Importance of Hyperparameters
of Machine Learning Algorithms. Journal of Machine Learning Research, [online] 20(53),
pp.1–32. Available at: https://www.jmlr.org/papers/v20/18-444.html.

